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Abstract

Relatively little is known about the disturbance ecology of large wildfires in the southern Appalachians. The occurrence of a 4000-ha wildfire
in the Linville Gorge Wilderness area in western North Carolina has provided a rare opportunity to study a large fire with a range of severities. The
objectives of this study were to 1) assess the potential for using multi-temporal Landsat imagery to map fire severity in the southern Appalachians,
2) examine the influences of topography and forest community type on the spatial pattern of fire severity; and 3) examine the relationship between
predicted fire severity and changes in species richness. A non-linear regression equation predicted a field-based composite burn index (CBI) as a
function of change in the Normalized Burn Ratio (ANBR) with an R* of 0.71. Fire severity was highest on drier landforms located on upper
hillslopes, ridges, and on southwest aspects, and was higher in pine communities than in other forest types. Predicted CBI was positively
correlated with changes in species richness and with the post-fire cover of pine seedlings (Pinus virginiana, P. rigida, and P. pungens), suggesting
that burn severity maps can be used to predict community-level fire effects across large landscapes. Despite the relatively large size of this fire for
the southern Appalachians, severity was strongly linked to topographic variability and pre-fire vegetation, and spatial variation in fire severity was
correlated with changes in species richness. Thus, the Linville Gorge fire appears to have generally reinforced the ecological constraints imposed

by underlying environmental gradients.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fire was historically a major influence on landscape patterns
and species diversity in the forests of the southern Appalachians
(Delcourt & Delcourt, 1997). It is generally thought that
frequent, low-intensity fires set by Native Americans promoted
regeneration of pine and oak species on dry upper slopes and
ridges, but rarely spread into moist sheltered coves and valleys.
Fire remained an important part of the disturbance regime after
European settlement, with forests in some parts of the region
burning approximately every thirteen years (Harmon, 1982).
The advent of fire suppression in the 1930°s reduced the
frequency and sizes of fires (Barden & Woods, 1973) causing
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declines in pine and oak regeneration (Harrod et al., 1998;
Williams & Johnson, 1992). The recent occurrence of a 4000-ha
wildfire in western North Carolina has provided a rare
opportunity for research into the ecological effects of large-
scale disturbances in the southern Appalachians.

Current ecological theory posits that the behavior and effects
of large, infrequent disturbances are qualitatively different from
more frequent low- to moderate-severity events (Romme et al.,
1998). Although the influences of fuels and topography on fire
behavior and fire effects are widely recognized, these
constraints may be relatively weak in the case of larger, high-
intensity conflagrations that are driven primarily by high winds
and low fuel moisture (Turner & Romme, 1994). A fire behav-
ior modeling experiment found that once weather conditions
reached a threshold, all age-classes of subalpine forests were
equally susceptible to crown fires regardless of their fuel
loading or canopy structure (Bessie & Johnson, 1995). However
the empirical evidence for this hypothesis is mixed. For the
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large, high-intensity wildfires occurring in Yellowstone Na-
tional Park during the summer of 1988, the probability of high-
severity crown fire was greater than expected in late-
successional forests, but was unrelated to stand density or
topography (Turner et al., 1999). In contrast, patterns of severity
in a wildfire that burned 4500 ha of subalpine forest in
northwestern Colorado were constrained by forest cover type,
forest structure, topography, and disturbance history (Bigler
et al., 2005). A study of a 3000-ha landscape in coastal Oregon
found that topography had a weak influence on the pattern of
old-growth remnants left by a large (>100,000 ha) fire in the
mid-19th century (Wimberly & Spies, 2001), whereas another
study in a nearby landscape impacted by the same fire found
much stronger topographic controls on the distribution of old
growth (Harcombe et al., 2004). In the boreal mixedwood forest
of Alberta, major forest cover types differed considerably in
their probability of burning at both local and regional scales,
and no differences were found between small and large fires
(Cumming, 2001). However, a study of wildfire patterns in
Portugal found that land cover patterns had a stronger influence
on small fires than large fires (Nunes et al., 2005).

More assessments of large, severe-weather fires in a variety
of forest ecosystems are needed to test the generality of the
Turner and Romme (1994) hypothesis. From the standpoint of
fire management, it is important to recognize physical
environments that are inherently susceptible to high-intensity
fire. Furthermore, it is valuable to know whether fire effects
could be modified by manipulating the spatial pattern of
vegetation. From an ecological standpoint, it is important to
determine whether large, high-severity wildfires have unique
ecological effects that cannot be easily predicted from our
knowledge of more frequent, low-severity events. Because of
the massive amount of data that is needed to adequately
characterize the spatial pattern of a large fire, satellite remote
sensing has emerged as an important tool for monitoring fire
effects (Key & Benson, 2002). Patterns of burn severity can be
measured as changes in spectral signatures that occur following
a fire. Then, if physical or biological changes following the fire
are related to burn severity, these severity maps can be used to
make predictions of fire effects (Cocke et al., 2005).

Several studies have demonstrated the utility of Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM-+)
imagery for mapping fire severity. A single image acquired soon
after the fire is often sufficient for developing burn maps, and this
approach has been used to map spatial variation in fire severity in
subalpine forests following the 1988 Yellowstone fires (Turner
etal., 1994), and in Pacific Northwest conifer forests following the
1991 Warner Creek burn (Kushla & Ripple, 1998). However,
multi-date imagery is advantageous because it accounts for pre-
fire variability in vegetation structure. Change in the Normalized
Burn Ratio (NBR), a ratio of Landsat bands 4 (near infrared) and
7 (middle infrared), appears to be a particularly effective index of
burn severity. Studies have found correspondence between change
in NBR and field-based severity metrics in a variety of forest types
in the southwestern United States (Cocke et al., 2005; Miller &
Yool, 2002), mixed-conifer forests in the Sierra Nevada (Van
Wagtendonk et al., 2004), and boreal forests of interior Alaska

(Epting et al., 2005). Comparisons of multiple techniques have
found that burn severity mapping based on the NBR performs well
compared to other types of remote sensing indices such as the
normalized difference vegetation index (NDVI), principal com-
ponents transformations, and tasseled cap transformations (Epting
et al., 2005; Miller & Yool, 2002; Rogan & Yool, 2001).

To date, the NBR and related remote sensing methods have
primarily been applied to study fires in coniferous forests of the
western United States. It is uncertain whether they will be as
effective for mapping fire severity in hardwood-dominated
landscapes of the southern Appalachians. Furthermore, because
large, high-intensity fires occur so rarely in this region, it is not
known whether vegetation and topography exert a strong
influence over patterns of burn severity, or whether burn
severity maps can be used to make spatial predictions of fire
effects. The objectives of this research were therefore to
1) gauge the potential for using multi-temporal satellite imagery
to map fire severity in forests of the southern Appalachians;
2) assess the influences of topography and pre-fire forest com-
munity type on the spatial pattern of fire severity; and 3)
determine whether remote-sensing derived measurements of
fire severity are related to post-fire changes in species richness.

2. Methods
2.1. Study area

Linville Gorge is a federally designated wilderness area
located in the Blue Ridge Escarpment near Boone, North
Carolina, USA. Elevations range from approximately 320 m at
the bottom of the gorge to 1250 m on upper ridges. Topography
is extremely rugged; both sides of the gorge contain prominent
cliff-like bluffs that divide upper and lower slopes (Fig. 1). The
majority of Linville Gorge is unlogged and it is one of the
largest remaining tracts of old-growth forest in the region.
Large, high-intensity fires occurred in 1860 and 1915, and the
last widespread surface fires occurred in the 1950’s. In
November 2000 a wildfire from an unattended campfire burned
approximately 4000 ha in and around the wilderness area.

The presence of strong environmental gradients is reflected
in a diverse assemblage of forest community types within the
gorge (Newell & Peet, 1998). Upper slopes are dominated by pine
and oak forests which are composed of several species of eastern
yellow pine (Pinus virginiana, Pinus rigida, and Pinus pungens)
and oak (Querucs coccinea, Quercus montana, Quercus alba) in
the overstory with a thick layer of ericaceous shrubs (Kalmia
latifolia, Vaccinium spp.) in the understory. Rocky outcrops
found within the bluffs are dominated by ericaceous shrubs such
as piedmont rhododendron (Rhododendron minus). Slopes below
the bluffs are dominated by chestnut oak (Q. prinus) and are
classified as acidic slopes and montane oak forests. Acidic slopes
are distinguished by abundant rhododendron (Rhododendron
maximum) in the understory with white pine (Pinus strobus) and
red maple (Acer rubrum) present in varying amounts. Montane
oak forests are dominated by chestnut oak (Q. montana) and
include tulip poplar (Liriodendron tulipifera) and dogwood
(Cornus florida). Moister areas including sheltered ravines
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Fig. 1. (a) Study area map illustrating the fire perimeter, the wilderness area boundary, and topography; (b) Map of predicted composite burn index (CBI) for the 2000

Linville Gorge fire.

descending from upper slopes and the bottom of the gorge
along the Linville River are classified as acidic coves and are
dominated by eastern hemlock (7suga canadensis) in the cano-
py and thick R. maximum in the understory.

2.2. Satellite imagery

Two satellite images were obtained to represent pre- and
post-burn landscape conditions: a Landsat TM image from June
0f 2000, and a Landsat ETM+ image from June of 2001. These
datasets were obtained from the Multi-Resolution Land
Characteristics Consortium (MRLC) archive as georeferenced
and terrain-corrected images. Digital numbers were converted
to reflectance values using the COST method of Chavez (1996).
Adjustments were made for inter-date differences in atmo-
spheric conditions using the dark object subtraction technique
of Moran et al. (1992). The Normalized Burn Ratio (NBR) was
then computed for each image as

(R4 — Ry)

(Ra +

NBR = 1000 x
R7)

(1)

where the R4 and R, values were reflectance for bands 4 and 7.
Change in NBR following the fire was computed as

dNBR = NBR,. — NBR oy

(2)
where NBR,,,. was from the 2000 pre-fire image and NBR o5
was from the 2001 post-fire image.

A map of the fire perimeter was generated by manually
digitizing the dNBR layers, using a 15-m false-color infrared
ASTER image from June of 2001 as an additional reference
image. Much of the fire’s outer perimeter was located along
natural firebreaks such as rivers, or along roads and trails that
were used as firebreaks during fire suppression efforts. A
geographic information system (GIS) database that contained
layers of rivers, roads, and trails was used to identify these
firebreaks when digitizing the fire boundary.

2.3. Field data and calibration

Field data from a total of 57 plots was obtained from three
sources. The first data set consisted of 21 remeasurement plots.
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These were 400 m? (20 mx 20 m) permanent vegetation plots
that were initially established in 1992 (Newell & Peet, 1998),
and were relocated and resurveyed in 2003 to examine plant
community dynamics after the fire (Reilly, 2004). The locations
of these plots were measured using a handheld GPS. The second
data set included 11 additional unburned plots from the original
1992 survey. The locations of these plots were measured from
plot locations marked on 1:12,000 aerial photographs. The third
data set consisted of 25 700 m* (15 m radius) plots that were
surveyed in the fall of 2004 using the methodology of Key and
Benson (2002) and mapped with a handheld GPS unit. The
locations of these additional plots were chosen subjectively,
with an objective of generating a combined distribution of
dNBR values (from all three data sources) that reflected the
overall distribution of dNBR values within the fire perimeter.

A Composite Burn Index (CBI) was computed for each of
these field plots using a modified version of the FIREMON
landscape assessment methodology (Key & Benson, 2002).
This index was based on field estimates of the percentage of
stem mortality in the tall shrub/small tree stratum, and estimates
of percent canopy mortality in the intermediate and large tree
strata. These particular metrics were chosen because they were
all measured consistently across the various sources of field
data, and because they could be reliably measured 3—4 years
after the fire. These metrics were recorded as index values
ranging between 0 and 3, with higher numbers indicating
greater mortality (Key & Benson, 2002), and the CBI was a
computed as a weighted average with weights of 1, 2, and 3
assigned to the shrub/small tree, intermediate tree, and large tree
strata. This weighting put more emphasis on the mortality of
larger trees, which were the most reliable field-based indicators
of long-term fire effects. The composite CBI values were
rescaled to range between 0 and 1, with unburned plots assigned
a CBI value of zero. Each plot was associated with the INBR
measurement from the nearest pixel by overlaying plot
centroids on the dNBR image. Non-linear regression was
used to fit an equation relating the observed CBI indices to
dNBR, and this equation was then used to predict CBI for all
pixels falling inside the fire perimeter.

2.4. Spatial analysis

Elevation, slope, and aspect measurements were obtained
from a 30-m digital elevation model. A topographic wetness
index (Beven & Kirkby, 1979) was created using the
TOPOCROP ArcView extension (Schmidt & Persson, 2003).
A smoothing parameter of 1 was used to identify all ridges, and
a mean filter was applied to minimize small scale heterogeneity
in index values. A map of pre-fire forest communities (Newell
& Peet, 1998) was obtained from the USFS and used to identify
rocky outcrops, pine forests, oak forests, and hemlock forests,
which represented the major cover types and fuel complexes in
the gorge. Elevation, slope, and topographic wetness values
were grouped into four classes based on quartiles, and aspect
was grouped into eight 45-degree classes corresponding with
the major compass directions: N, NE, E SE S, SW W and NW.
The mean and standard deviation of predicted CBI were

computed for each of these vegetation and topographic classes.
Because a reliable forest community map was only available for
the Linville Gorge Wilderness, burned areas outside the
wilderness were not included in the vegetation overlay analysis.

Linear regression analysis was used to model predicted CBI
was a function of topographic and vegetation effects. Topo-
graphic variables were continuous, whereas vegetation classes
were converted to indicator variables for the dominant cover
types. The variable for the oak community type was not included
in the modeling, and thus served as the baseline against which
the parameter values for the other community types were
compared. Aspect was converted into a heat-load index ranging
from 0 to 1 with highest values for southwest slopes and lowest
values for northeast slopes (McCune & Keon, 2002). An arcsine
square root transform was applied to both the predicted CBI and
the heat load index. Prior to the modeling, the original 30 m grids
were aggregated to 90 m by computing the mean of each
independent and dependent variable within a 3 x 3 pixel window.
This aggregation was carried out to reduce the potential effects
of georegistration errors among the multiple layers, and to
reduce the computational burden of fitting an autoregressive
model. The total area modeled encompassed the 3165 90 m
pixels (2564 ha) within the Linville Gorge Wilderness for which
both topographic and vegetation data were available.

We initially applied standard linear regression methods based
on ordinary least squares. However, strong spatial autocorrela-
tion of the residuals indicated that the assumption of independent
errors was violated. Therefore, we also computed a simultaneous
autoregressive model that explicitly incorporated spatial auto-
correlation (Haining, 2003). We applied the spatial error form of
the simultaneous autoregressive model

Y = XB +iW(Y — XB) + € (3)

where Y is a vector of dependent variables, X is a matrix of
independent variables, @ is a vector of parameters, A is the
autoregressive parameter that captures the degree of spatial
autocorrelation among neighboring observations, W is a spatial
weights matrix that defines the neighbors of each pixel, and €; is
a vector of uncorrelated errors. This formulation can be
interpreted as a linear regression carried out on spatially filtered
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Fig. 2. Modified composite burn index (CBI) from 57 field plots versus
change in the normalized burn ratio (INBR) based on Landsat images from
2000 and 2001. The solid line represents the regression equation CBI=1-
exp(—0.0039733 dNBR).
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Fig. 3. Mean CBI (predicted as a function of dANBR) for (a) elevation classes, (b) topographic wetness index classes, (c) slope classes, and (d) aspect classes. Class
groupings for elevation, topographic wetness index, and slope are based on quartiles. Error bars represent the standard deviation of CBI for each class.

dependent and independent variables (Anselin, 2002). The
spatial weights matrix was defined using a queen’s rule, in which
the neighborhood of each pixel consisted of the eight nearest
horizontal and diagonal neighbors. Moran’s I correlograms were
computed over a range of lag distances to quantify spatial
autocorrelation in the residuals from the ordinary least squares
model and the spatially autoregressive model. Modeling was
carried out in the R language environment (R Development Core
Team, 2005) using the spdep package for spatial autoregression
(Bivand, 2002).

Detailed pre- and post-fire vegetation surveys were available
for the 21 remeasurement plots. Pre-fire vegetation measure-
ments were taken in 1992, and post-fire vegetation measure-
ments were taken in 2003. Despite a major drought during the
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Fig. 4. Mean CBI (predicted as a function of dNBR) for the four major
community types in Linville Gorge. Error bars represent the standard deviation
of CBI for each community type.

late 1990’s and a subsequent infestation of southern pine beetle
(Dendroctinus frontalis), comparisons of pre- and post-fire
plant community composition from unburned permanent plots
showed that changes were minimal in the absence of fire (Reilly
et al., 2006). Thus, changes in the burned plots resulted primar-
ily from the fire, and not from successional changes that
occurred prior to 2000. Species richness for each remeasure-
ment plot was estimated as the mean species richness computed
on 2—4 100 m” subplots. A complete description of the field
sampling protocols is provided in Newell and Peet (1998) and
Reilly (2004). Changes in species richness were calculated
separately for trees, shrubs, and herbs. Pearson correlation
coefficients () between predicted CBI and changes in species

Table 1

Fitted coefficients and p-values from the standard least squares and spatial
autoregressive models of CBI as a function of topographic and vegetation
variables

Variables Ordinary least squares® Spatial autoregressive®

Coefficient p-value Coefficient p-value
Intercept 0.62425 <0.001 0.64914 <0.001
Elevation 0.10093 <0.001 0.16817 <0.001
Slope 0.07375 <0.001 0.01794 0.005
Topographic wetness —0.05857 <0.001 —0.06069 <0.001

index

Heat Load Index 0.05336 <0.001 0.05231 <0.001
Pine community 0.33140 <0.001 0.23391 <0.001
Hemlock community 0.14156 <0.001 0.12089 <0.001
Lambda NA NA 0.87701 <0.001

@ R*=0.41, Akaike’s Information Criterion=69.2.
® pseudo-R*= 0.77, Akaike’s Information Criterion=—2341.9.
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Fig. 5. Moran’s I correlogram of residuals from the ordinary least squares and
spatially autoregressive models of CBI as a function of topography and vegetation.
Higher values of Moran’s I indicate more spatial autocorrelation at a given lag
distance. Neighboring pixels were defined based on the queen’s rule (eight nearest
neighbors). The first-order lag encompasses all of a pixel’s neighbors; the second-
order lag encompasses all neighbors of a pixel’s first-order neighbors; etc.

richness were examined to assess the potential for using burn
severity maps to predict biodiversity responses to fire.
Combined cover of yellow pine seedlings (P. virginiana,
P, rigida, P. and pungens) was estimated for each 2—4 100 m>
subplots within each remeasurement plot using the following
cover classes: 0—1%, 1-2%, 2—5%, 5—10%, 10-25%, 25—-50%,
50-75%, 75-95%, 95—100%. The midpoints of these cover
classes were averaged to generate a composite value for each
remeasurement plot. Because of the skewed distribution of yellow
pine seedlings, Spearman’s rank correlation (p) was used to assess
the relationship between predicted CBI and pine seedling cover.
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3. Results

The relationship between dNBR and CBI was non-linear, with
CBI increasing rapidly as dNBR increased from 0 to 200, and
reaching an asymptote of 1.0 at a dNBR of approximately 500
(Fig. 2). Several non-linear equation forms were examined to find
one that maximized the fit of the observed data, met statistical
assumptions (normality and constant variance of residuals), and
produced predictions bounded within the possible range of CBI
(0—1.0). Based on these criteria, the following equation was
chosen to predict CBI as a function of ANBR
CBI =1 — exp(—0.0039733 x dNBR) 4)

This model had an R? of 0.71 and a standard error of 0.21.
Correlogram analysis of the model residuals did not detect any
residual spatial structure. The #-test for the value of the
coefficient (#=4.2365, p<0.0001), and F-test for model
goodness of fit (F=131.8427, p<0.0001) were both highly
significant. The model was applied to the dNBR image to
generate the map of predicted CBI (Fig. 1).

Predicted CBI increased with elevation up to the 725-865 m
class, then decreased slightly at the highest elevations (Fig. 3a),
decreased with topographic wetness index (Fig. 3b), and
increased with slope (Fig. 3c). Predicted CBI was highest on
southwest and west aspects, and lowest on northeast and east
aspects (Fig. 3d). Predicted CBI was also higher in pine and
outcrop communities than in oak or hemlock communities
(Fig. 4). Predicted CBI was highly variable within all of the
topographic and vegetation classes.
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The ordinary least squares regression model had an R? of
0.41, suggesting that topographic and vegetation constraints had
a relatively strong influence on the spatial pattern of fire
severity. Predicted CBI increased with elevation, slope, and heat
load index, decreased with topographic wetness index, and was
higher in pine and hemlock communities than in oak
communities (Table 1). The parameter for rocky outcrop
communities was not statistically significant, and was dropped
from the final model. The standardized topographic coefficients
can be interpreted as the change in the arcsine-square root
transformed CBI index that would result from an increase of one
standard deviation of the predictor variable. The community
coefficients can similarly be interpreted as the change that
would result from a shift from 0 to 100% dominance of the
community type. The standardized coefficients indicated that
elevation had the strongest influence on fire severity out of the
topographic variables, whereas aspect and topographic wetness
had the weakest influences and slope was intermediate. Pine
communities had a stronger influence on fire severity than
hemlock communities. The Moran’s I correlogram of the
residuals indicated that there was considerable spatial autocor-
relation in the pattern of fire severity that was not accounted for
by the topographic and vegetation variables (Fig. 5).

The autoregressive spatial error model had a pseudo-R*
(Nagelkerke, 1991) of 0.77. The Moran’s I correlogram of the
residuals indicated that the predictor variables, in combination
with the spatial error term, accounted for the majority of the
spatial pattern of fire severity (Fig. 5). Including the spatial error
term modified the coefficients for some of the predictor
variables. The effect of elevation was greater in the spatial
autoregressive model, and the effects of aspect and topographic
wetness were similar to the ordinary least squares model. The
effect of slope was considerably less in the spatial autoregres-
sive model than in the ordinary least squares model. The
influences of both pine and hemlock communities were lower in
the spatial autoregressive model, but pine communities still had
had a stronger effect on fire severity than hemlock communities.

Changes in plant species richness were positively correlated
with CBI values predicted using satellite imagery (Fig. 6).
Statistically significant correlations were found for herbs and
trees, but not for shrubs. The cover of post-fire yellow pine
seedlings was also positively correlated with CBI. Although
only a few plots had pine seedlings cover greater than 10%,
these all occurred on sites with a predicted CBI greater than 0.5
(Fig. 6d). In contrast, pine seedlings cover was less than 1% on
all plots with a predicted CBI less than 0.5.

4. Discussion

Multi-temporal analysis of fire severity using dNBR appears
to be an effective technique for mapping the severity of large
wildfires in the southern Appalachians. The R* of 0.71 for our
non-linear regression of CBI versus dNBR was comparable to
values reported in other studies that predict fire severity as a
continuous function of remotely sensed variables from Landsat
imagery. Maximum R” values for linear relationships between
field-based CBI indices and remotely-sensed indices ranged

from 0.59 to 0.83 for four fires in interior Alaska (Epting et al.,
2005). Post-fire canopy cover following the Warner Creek fire
in western Oregon was modeled using a multiple regression
equation consisting of pre- and post-burn indices with an R? of
0.82. An R? 0f 0.89 was reported for a polynomial regression of
CBI versus dNBR from a burn mapping study in Yosemite
National Park (Van Wagtendonk et al., 2004).

Several factors limited our ability to predict fire severity in
Linville Gorge with greater accuracy. Our field assessment was
carried out several years after the fire, whereas our post-fire
satellite image was obtained in the first growing season after the
fire. An analysis of field-based severity measurements collected
at the same time as the post-fire satellite image would be
expected to result in higher accuracy of fire severity predictions.
The fact that a reasonably strong relationship was found in spite
of this temporal lag suggests that imagery obtained the year
after a fire is valuable as an indicator of longer-term changes in
addition to immediate fire effects. Many portions of the Linville
Gorge fire exhibited local heterogeneity in burn severity,
making it difficult to locate large patches with homogeneous
dNBR values. This was particularly true for the intermediate
levels of fire severity, which often occurred as narrow transition
zones between areas of minimal fire effects and complete
overstory mortality. Therefore, georegistration errors, global
positioning system (GPS) errors, and the limitations of Landsat
TM and ETM+ spatial resolution may have greater effects in the
heterogeneous forest communities and variable terrain of the
Southern Appalachians than in other ecosystems with less
spatial variability in vegetation and topography. Finally,
although dNBR exhibits strong correlations with field-based
metrics of fire severity in a variety of ecosystems, it is not
necessarily the best index of fire severity in all situations
(Epting et al., 2005; Rogan & Yool, 2001; Roy et al., 2006).

Topography and vegetation both had strong effects on the
spatial pattern of fire severity resulting from the 2000 Linville
Gorge Fire. The topographic effects suggested that fire behavior
and effects were influenced by spatial variability in site
moisture. Elevation had the strongest effect out of the
topographic variables, indicating a tendency for higher fire
severities on the dry bluffs and upper hillslopes near the top of
the gorge. The influences of heat load index and topographic
wetness index similarly indicated that fire severity was greatest
on sites that received high levels of solar radiation and had
relatively dry soils. Rapid upslope fire spread may have
contributed to higher fire severities on steep slopes. However,
the decreased slope effects in the spatial autoregression model
indicated that the influences of slope on fire severity could not
be separated from the potentially confounding effects of spatial
autocorrelation. High severity in pine-dominated communities
reflected greater flammability of conifer fuels, combined with
tree mortality and increased fuel loads resulting from a southern
pine beetle outbreak in the late 1990’s.

The low fire severities in hemlock communities found in the
univariate overlay analysis (Fig. 4) reflected the association of
T canadensis with moist areas along ravines and at the bottom
of the gorge. However, 7. canadensis has thin bark, shallow
roots, and flammable foliage, and heavy litter deposits, and is
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considered to be among the most fire-sensitive of all eastern tree
species (Godman & Lancaster, 1990). The positive coefficients
for hemlock communities in the multiple regression models
indicated that when the influences of topography were con-
trolled for, fire severity in hemlock communities was actually
higher than in oak communities because even a low-intensity
fire can cause high levels of 7. canadensis mortality. Similarly,
once the effects of higher severity in the mid-elevation pine
forests were controlled for in the multivariate regression, the
relationship between elevation and fire severity changed from
weakly unimodal to strongly linear. These results emphasize the
importance of using multiple regression models to disentangle
the influences of topography and vegetation on fire severity.

These findings contrast with some boreal and subalpine
forests in the western United States and Canada, in which local
effects of terrain and fuels are relatively weak for the largest
fires burning under the most extreme climate conditions (Bessie
& Johnson, 1995; Fryer & Johnson, 1988; Turner et al., 1999).
The interspersion of pine- and oak-dominated forest commu-
nities in Linville Gorge likely had a greater influence on fire
behavior than in western landscapes where tree species diversity
is lower and conifer forests are the dominant community type.
Fire frequency was similarly linked to spatial variability in
forest cover types in a boreal mixedwood forest comprised of
spruce-, pine-, and deciduous-dominated communities (Cum-
ming, 2001). Fire severity also varied among spruce-, pine-, and
aspen dominated communities in a subalpine forests in
northwestern Colorado (Bigler et al., 2005). Differential
susceptibility of communities to other types of disturbances
may reinforce their distinctive responses to fire. In the case of
the Linville Gorge fire, the differences in fire severity between
pine and oak-dominated communities were likely increased by a
southern pine beetle outbreak that altered forest structure and
fuels in the pine communities. A positive relationship between
pre-fire pine beetle infestation and fire severity was also found
for the Yellowstone fires of 1988 (Turner et al., 1999).

Spatial heterogeneity in fire severity translated into variable
community responses in Linville Gorge. High severity fires that
kill dominant vegetation make resources available and provide
opportunities for colonization by new species. A previous study
documented strong relationships between field-based metrics of
fire severity and post-fire changes in plant community diversity
(Reilly et al., 2006). In the present study, herbs and trees, both of
which exhibited high levels of post-fire seedling establishment,
increased in richness and were correlated with remote-sensing
based metrics of fire severity. Shrubs regenerated primarily by
sprouting and exhibited comparatively low increases in species
richness and weak relationships with fire severity. A detailed
analysis of the ecological mechanisms underlying plant
community responses to the Linville Gorge fire is provided
by Reilly et al. (2006). The present study confirmed that remote
sensing-derived metrics of fire severity can serve as predictors
of plant community responses to fire.

Burn maps derived from satellite imagery can also be used to
identify areas with a high potential for post-fire establishment of
eastern yellow pine (P. virginiana, P. rigida, and P. pungens).
All three of these species are shade intolerant, and P, rigida and

P. pungens both have serotinous cones. Loss of pine commu-
nities dominated by these species is presently a conservation
concern, and is exacerbated by fire management policies that
limit the occurrence of stand-replacing fires. Several of the field
sites in this study had high percent cover of these pine species
3 years after the fire, indicating successful pine seedling
establishment in areas that were previously covered with older,
decadent pine stands transitioning towards oak dominance
(Newell & Peet, 1998). All of these sites with had a predicted
CBI greater than 0.5, and were in areas that had relatively high
pine basal area prior to the fire. Although low levels of
regeneration have been observed after some prescribed burns
(Elliott et al., 1999), other evidence suggests that prescribed
burns can be successful at regenerating pine (Turrill, 1998;
Waldrop & Brose, 1999; Welch & Waldrop, 2001). Burn
severity maps derived from satellite imagery may prove useful
for modeling the potential distribution of pine regeneration
following prescribed burns and wildfires.

5. Conclusion

Landscape-level patterns of fire severity in the southern
Appalachians can be mapped based on changes in dNBR
derived from multitemporal satellite imagery. Furthermore,
these remotely-sensed indices of fire severity have potential for
predicting changes in forest community composition and regen-
eration of fire-dependent tree species. Even though the Linville
Gorge fire is considered exceptionally large and severe for these
eastern forests, there were still relatively strong influences of
topography and pre-fire vegetation on the spatial pattern of fire
severity. Fire severity was highest on drier landforms located on
upper hillslopes, ridges, and on southwest aspects, and was
higher in pine communities impacted by a southern pine beetle
outbreak than in other community types. Spatial variability in
fire severity in turn influenced the spatial distribution of plant
species colonization and forest community change. Thus, large
fires in the southern Appalachians appear to reinforce pre-
existing patterns of landscape heterogeneity and community
diversity.
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